1,085 research outputs found

    Cumulative and Ratio Time Evaluations in Keystroke Dynamics To Improve the Password Security Mechanism

    Get PDF
    The password mechanism is widely adopted as a control security system to legitimate access to a database or a transaction content or computing resources. This is because of the low cost of the mechanism, the software routine simplicity, and the facility for the user. But the password mechanism can suffer from serious vulnerabilities, which have to be reduced in some way. An aid comes from the keystroke dynamic evaluation, which uses the rhythm in which an individual types characters on a keyboard. It has been demonstrated how the keystroke dynamics are unique biometric template of the users typing pattern. So, the dwell time (the time a key pressed) and the flight time (the time between “key up” and the next “key down”) are used to verify the real user’s identity. In this work we investigated the keystroke dynamic already reported in literature but with some differences, so to obtain additional benefits. Rather than the commonly adopted absolute times (dwell and fly times), we deal with cumulative and ratio ones (i.e. sum and ratio of dwell and fly times), taking into account that the latest are times which do not change even if the user’s typing style evolves with practic

    Augmented Reality for Restoration/Reconstruction of Artefacts with Artistic or Historical Value

    Get PDF
    The artistic or historical value of a structure, such as a monument, a mosaic, a painting or, generally speaking, an artefact, arises from the novelty and the development it represents in a certain field and in a certain time of the human activity. The more faithfully the structure preserves its original status, the greater its artistic and historical value is. For this reason it is fundamental to preserve its original condition, maintaining it as genuine as possible over the time. Nevertheless the preservation of a structure cannot be always possible (for traumatic events as wars can occur), or has not always been realized, simply for negligence, incompetence, or even guilty unwillingness. So, unfortunately, nowadays the status of a not irrelevant number of such structures can range from bad to even catastrophic. In such a frame the current technology furnishes a fundamental help for reconstruction/restoration purposes, so to bring back a structure to its original historical value and condition. Among the modern facilities, new possibilities arise from the Augmented Reality (AR) tools, which combine the virtual reality (VR) settings with real physical materials and instruments. The idea is to realize a virtual reconstruction/restoration before materially acting on the structure itself. In this way main advantages are obtained among which: the manpower and machine power are utilized only in the last phase of the reconstruction; potential damages/abrasions of some parts of the structure are avoided during the cataloguing phase; it is possible to precisely define the forms and dimensions of the eventually missing pieces, etc. Actually the virtual reconstruction/restoration can be even improved taking advantages of the AR, which furnish lots of added informative parameters, which can be even fundamental under specific circumstances. So we want here detail the AR application to restore and reconstruct the structures with artistic and/or historical valu

    Virtuality Supports Reality for e-Health Applications

    Get PDF
    Strictly speaking the word “virtuality” or the expression “virtual reality” refers to an application for things simulated or created by the computer, which not really exist. More and more often such things are becoming equally referred with the adjective “virtual” or “digital” or mentioned with the prefixes “e-” or “cyber-”. So we know, for instance, of virtual or digital or e- or cyber- community, cash, business, greetings, books .. till even pets. The virtuality offers interesting advantages with respect to the “simple” reality, since it can reproduce, augment and even overcome the reality. The reproduction is not intended as it has been so far that a camera films a scenario from a fixed point of view and a player shows it, but today it is possible to reproduce the scene dynamically moving the point of view in practically any directions, and “real” becomes “realistic”. The virtuality can augment the reality in the sense that graphics are pulled out from a television screen (or computer/laptop/palm display) and integrated with the real world environments. In this way useful, and often in somehow essentials, information are added for the user. As an example new apps are now available even for iphone users who can obtain graphical information overlapped on camera played real scene surroundings, so directly reading the height of mountains, names of streets, lined up of satellites .., directly over the real mountains, the real streets, the real sky. But the virtuality can even overcome reality, since it can produce and make visible the hidden or inaccessible or old reality and even provide an alternative not real world. So we can virtually see deeply into the matter till atomic dimensions, realize a virtual tour in a past century or give visibility to hypothetical lands otherwise difficult or impossible to simple describe. These are the fundamental reasons for a naturally growing interest in “producing” virtuality. So here we will discuss about some of the different available methods to “produce” virtuality, in particular pointing out some steps necessary for “crossing” reality “towards” virtuality. But between these two parallel worlds, as the “real” and the “virtual” ones are, interactions can exist and this can lead to some further advantages. We will treat about the “production” and the “interaction” with the aim to focus the attention on how the virtuality can be applied in biomedical fields, since it has been demonstrated that virtual reality can furnish important and relevant benefits in e-health applications. As an example virtual tomography joins together 3D imaging anatomical features from several CT (Computerized axial Tomography) or MRI (Magnetic Resonance Imaging) images overlapped with a computer-generated kinesthetic interface so to obtain a useful tool in diagnosis and healing. With the new endovascular simulation possibilities, a head mounted display superimposes 3D images on the patient’s skin so to furnish a direction for implantable devices inside blood vessels. Among all, we chose to investigate the fields where we believe the virtual applications can furnish the meaningful advantages, i.e. in surgery simulation, in cognitive and neurological rehabilitation, in postural and motor training, in brain computer interface. We will furnish to the reader a necessary partial but at the same time fundamental view on what the virtual reality can do to improve possible medical treatment and so, at the end, resulting a better quality of our life

    The analysis of pendolino (peo) mutants reveals differences in the fusigenic potential among Drosophila telomeres

    Get PDF
    Drosophila telomeres are sequence-independent structures that are maintained by transposition to chromosome ends of three specialized retroelements (HeT-A, TART and TAHRE; collectively designated as HTT) rather than telomerase activity. Fly telomeres are protected by the terminin complex (HOAP-HipHop-Moi-Ver) that localizes and functions exclusively at telomeres and by non-terminin proteins that do not serve telomere-specific functions. Although all Drosophila telomeres terminate with HTT arrays and are capped by terminin, they differ in the type of subtelomeric chromatin; the Y, XR, and 4L HTT are juxtaposed to constitutive heterochromatin, while the XL, 2L, 2R, 3L and 3R HTT are linked to the TAS repetitive sequences; the 4R HTT is associated with a chromatin that has features common to both euchromatin and heterochromatin. Here we show that mutations in pendolino (peo) cause telomeric fusions (TFs). The analysis of several peo mutant combinations showed that these TFs preferentially involve the Y, XR and 4th chromosome telomeres, a TF pattern never observed in the other 10 telomere-capping mutants so far characterized. peo encodes a non-terminin protein homologous to the E2 variant ubiquitin-conjugating enzymes. The Peo protein directly interacts with the terminin components, but peo mutations do not affect telomeric localization of HOAP, Moi, Ver and HP1a, suggesting that the peodependent telomere fusion phenotype is not due to loss of terminin from chromosome ends. peo mutants are also defective in DNA replication and PCNA recruitment. However, our results suggest that general defects in DNA replication are unable to induce TFs in Drosophila cells. We thus hypothesize that DNA replication in Peodepleted cells results in specific fusigenic lesions concentrated in heterochromatinassociated telomeres. Alternatively it is possible that Peo plays a dual function being independently required for DNA replication and telomere capping

    Hallmarks of Parkinson’s disease progression determined by temporal evolution of speech attractors in the reconstructed phase-space

    Get PDF
    Parkinson’s disease (PD) is one of the most widespread neurodegenerative diseases worldwide, affected by a number of alterations, among which speech impairments that, interestingly, manifests up to 10 years before other major evidences (e.g. motor impairments). In this regard, we investigated the feasibility of a model based on the temporal evolution of speech attractors in the reconstructed phase space to identify hallmarks of PD identification and progression. To this end, the adopted dataset was made of vocal emissions of 46 de-novo and 54 mid-advanced People with PD, plus 113 healthy counterpart. A statistical analysis was applied to test the identified hallmarks effectiveness for diagnostic support, monitoring, and staging of the disease. According to the obtained results, the adopted approach of considering the temporal evolution of speech attractors in the reconstructed phase-space results effective to discriminate among the three groups of pathological or healthy voice

    A 10-17 DOF Sensory Gloves with Harvesting Capability for Smart Healthcare

    Get PDF
    We here present a 10-17 Degrees of Freedom (DoF) sensory gloves for Smart Healthcare implementing an energy harvesting architecture, aimed at enhancing the battery lasting when powering the electronics of the two different types of gloves, used to sense fingers movements. In particular, we realized a comparison in terms of measurement repeatability and reliability, as well as power consumption and battery lasting, between two sensory gloves implemented by means of different technologies. The first is a 3D printed glove with 10 DoF, featuring low-cost, low-effort fabrication and low-power consumption. The second is a classical Lycra® glove with 14 DoF suitable for a more detailed assessment of the hand postures, featuring a relatively higher cost and power consumption. An electronic circuitry was designed to gather and elaborate data from both types of sensory gloves, differing for number of inputs only. Both gloves are equipped with flex sensors and in addiction with the electronics (including a microcontroller and a transmitter) allow the control of hand virtual limbs or mechanical arts in surgical, military, space and civil applications.Six healthy subjects were involved in tests suitable to evaluate the performances of the proposed gloves in terms of repeatability, reproducibility and reliability. Particular effort was devoted to increase battery lasting for both glove-based systems, with the electronics relaying on Radio Frequency, Piezoelectric and Thermoelectric harvesters. The harvesting part was built and tested as a prototype discrete element board, that is interfaced with an external microcontroller and a radiofrequency transmitter board. Measurement results demonstrated a meaningful improvement in battery operation time up to 25%, considering different operating scenarios

    Sensory-Glove-Based Open Surgery Skill Evaluation

    Get PDF
    Manual dexterity is one of the most important surgical skills, and yet there are limited instruments to evaluate this ability objectively. In this paper, we propose a system designed to track surgeons’ hand movements during simulated open surgery tasks and to evaluate their manual expertise. Eighteen participants, grouped according to their surgical experience, performed repetitions of two basic surgical tasks, namely single interrupted suture and simple running suture. Subjects’ hand movements were measured with a sensory glove equipped with flex and inertial sensors, tracking flexion/extension of hand joints, and wrist movement. The participants’ level of experience was evaluated discriminating manual performances using linear discriminant analysis, support vector machines, and artificial neural network classifiers. Artificial neural networks showed the best performance, with a median error rate of 0.61% on the classification of single interrupted sutures and of 0.57% on simple running sutures. Strategies to reduce sensory glove complexity and increase its comfort did not affect system performances substantially

    Virtual reality implementation as a useful software tool for e-health applications

    Get PDF
    Human hand and finger movements are of obvious importance. The possibility of recording all fingers joints movements during everyday life is then strategic for medical diagnosis, surgery and post traumatic rehabilitation. A proper presentation of recorded data can be really useful for doctors and therapists to correctly act in the occurrence of peripheral nerve injury, rigidities, camptodactyly (decline in permanent deformity of the interphalangeal junction), orthoses, tenolisi, congenital malformations, trauma, dexterity and/or muscular and/or articulate motility evaluations, thumb atros, syndromes, use of mentors, spasm, use of mechanical supports etc.. According to this context we report a virtual reality implementation on the basis of fingers movements recorded data, suitable for fingers joints movement analysi
    • …
    corecore